Gas laws: 03. Kinetic theory of Gases

Laws that relate the pressure, Volume & temperature of the gas are known as gas laws.

Three basic gas laws,

- 1] Boyle's law.
- 27 Charlets law.
- 3] Gay-Lussac's law.

1] Boyle's law:

For fixed mass of gas at constant temperature, Pressure: is inversely proportional to volume. Mathematically it is written as,

 $\int P \propto \frac{1}{V}$

where,

Temperature = constant

P= pressure

V = Volume

2] charle's law:

The volume of a fixed mass of gas is directly proportional to its absolute temperature if the pressure is kept constant.

mathematically it is written as,

VAT

p = constant

where,

V=volume

T = Temperature

3 Gay-Lyssac's law:

The pressure of a fixed mass of a gas is directly proportional to its absolute temperature if the volume is kept constant.

enathematically it is written as,

Pat/ Volume = constant

where,

P= Pressure

T = Temperature

Avogadro's number:

The number of particles (aloms or molecules) in 22.4 litres of any gas is termed as Avogadro's number.

Approximately taken as,

NA = 6.023 × 10.

Mole :-

One mole is that amount of substance which contains exactly 6.02214076x 1023 molecules.

Elastic collision of particles :-

in which both kinetic energy & momentum of particles are conserved is called as elastic collision.

Dalton's law of partial pressures:-

The total pressure of a mixture of two or more non-reactive gases is the sum of the partial pressures of the individual gases in the mixture.

Ideal gas:-

A gas which obeys ideal gas equation at all pressures and temperatures is an ideal gas.

Mean Free Path:-

DIAGRAM

A Typical molecule in a gas executing random motion

- 1. The typical path followed by a particle during Brownian motion as shown in figure.
- 2. When molecules approaches another molecule, there is a repulsive force between them, due to which the molecules behave as small hard spherical particles.
- 3. This leads to elastic collisions between the molecules.
- 4. Therefore both the speed and direction of motion of the molecules change abruptly.
- 5. The molecules also collide with the walls of the container.
- 6. Molecules exerts force on each other only during collisions. Thus in between two successive collisions the molecules move along straight paths with constant velocity.
- 7. The average distance traversed by a molecule with constant velocity between two successive collisions is called mean free path.
- 8. The mean free path varies,
- a) Inversely with density of the gas.

Where,

N= Number of molecules

V= Volume of the gas

b) Inversely with square of the diameter of molecule d [Because it depends on a cross section of a molecule]

Mathematically it is written as,

$$\lambda = \frac{1}{\sqrt{2} \pi d^2 (N|V)}$$

PRESSURE OF IDEAL GAS:-

Consider an ideal gas filled in a cubical container of side 1'

Where,

1 = Side of cubical container

A = 12 = Area of face of cube

V=13= Volume of container Volume of 995.

Where,

N = No. of molecules of the gas

m = mass of each gas of molecules.

M = Total mass of gas inside container.

Now, As there are N no. of gas molecules & 3-axes,

N molecule will move along each axis
N molecule will move along X-axis
N molecule will move along Y-axis

Now, molecules will move along z-axis

Consider one gas molecules of mass 'm' move along x-axis with constant velocity, Initial momentum before collision,

Pi= mvz

Final momentum after collision,

Pf =-mv1

Change in momentum = Final momentum - Initial momentum

Change in momentum = $-mv_1 - mv_1$ $dp = -2mv_1$ = 21

Gain in momentum of surface 5 15,

dp=2mv1

Distance between two successive collision

where,

dt = Time interval between two successive collision.

Rate of change of momentum of surface '5' due to one molecule, dp = 2mv1

$$\frac{dP = mv_f^2}{df}$$

Rate of change of momentum of surface 's' due to N/3 molecules,

$$\frac{dP}{dt} = \frac{mv_{\pm}^{2}}{l} + \frac{mv_{2}^{2}}{l} + - - - + \frac{mv_{N|3}^{2}}{l}$$

$$\frac{dP}{dt} = \frac{m}{l} \left(V_1 + V_2 + \cdots + V_{N|3}^2 \right)$$

$$\frac{dP}{dt} = \frac{m}{1} \times \frac{N}{3} \times \left(\frac{V_1^2 + V_2^2 + \dots + V_{N|3}^2}{N|3} \right)$$

$$\frac{dP}{dt} = \frac{1}{3} \frac{mN}{l} \times V^2$$

$$\frac{dP}{dt} = \frac{1}{3} \times \frac{M}{l} \times \sqrt{V^2}$$

According to Newton's second law of motion, Rate of change of momentum is directly proportional to the applied force,

$$F = \frac{dP}{dt}$$

$$F = \frac{1}{3} \times \frac{M}{1} \times \sqrt{2}$$

$$P = \frac{1}{3} \times (\times \sqrt{2})^{2}$$

Prove that Voms & JT

Pressure exerted by a gas molecules on the walls of container is,

$$P = \frac{1}{3} \text{ RVrms}$$

$$P = \frac{1}{3} \times \frac{M}{V} \times \text{Vrms} \dots \left[\mathbf{S} = \frac{M}{V} \right]$$

$$3PV = MV_{oms}^{2}$$

$$V_{rms}^2 = \frac{3PV}{M} - - - - \left[1\right]$$

According to equation of state,

[PV=nRT]

Put, pv=nRT in equation [1],

$$V_{\text{2ms}}^2 = \frac{3 \text{ nRT}}{M} - \dots \left[\text{PV=nRT} \right]$$

n= mass of the gas (M)

mass of Avogadow's no. (Mo)

of molecules of gas

$$n = \frac{M}{M_0} \qquad n = \frac{m \times N}{m \times N_A}$$

$$V_{\text{TmS}}^2 = \frac{3RT}{Mo}$$
 $\left[m_X N_A = M_0 \right]$

$$V_{ms} = \sqrt{\frac{3RT}{Mo}}$$

VrmsaJT

Hence proved.

Average kinetic energy of gas molecules of T Pressure exerted by a gas molecules on the walls of container is, P= 1 PVms $p = \frac{1}{3} \times \frac{M}{V} \times V_{ms} - - \left[f = \frac{M}{V} \right]$ 3PV = MVms --[1] M= mxN Put in eq, (1), 3 pv = mxN x V2 --- [2] Put, PV=nRT in eqn (2), 3 nRT = mxNxVms mvms = 3nRT $MVms = 3x \frac{N}{NA} \times RT - ... \left[n = \frac{N}{NA} \right]$ Multiplication by & on both sides,

 $\frac{1}{2} \text{m Vrms} = \frac{3}{2} \times \frac{\text{M}}{\text{NA}} \times \frac{\text{RT}}{\text{N}}$

Kinetic energy of = 3 RT gas molecules 2 NA

Kinetic energy of gas molecules &T

03. Kinetic Theory of Gases.

Prove that Boyle's Law Pat Temperature constant PV = constant where, P = Pressure V = volume T = Temperature Pressure exerted by a gas molecules on the walls of container is, $P = \frac{1}{2} + x V_{rms}^2$ $P = \frac{1}{3} \times \frac{M}{V} \times V_{rms}^{2} \dots R = \frac{M}{V}$ DV = 1 mx NxVrms.. M = mx N PV=1 XNxmVms Multiply & Divide By 2, PV = 2 x Nx 1 mvrms) 3 PV = 2 xNx Average K.E. of gas molecules.

03. kinetic theory of gases. PV = constant PXI T = constant Hence, Boyle's law is proved. 03. Kinetic Theory of Gases.

- K.E. per unit Volume = ラp

Pressure exerted by a gas molecules on the walls of container is,

$$P=1$$
 exv_{rms}^2

$$P = \frac{1}{3} \times \frac{M}{V} \times V_{rms} \left[R = \frac{M}{V} \right]$$

$$3P = \frac{mxN}{V} \times V_{rms}^{2} \left[M = mxN \right]$$

Multiply by = on both sides,

$$\frac{3P - Nx^{\frac{1}{2}}mv_{rm5}^2}{2}$$

03. kinetic Theory of Gases.

Avg. K.E. Per molecule = 3 KT RMS velocity of a gas molecule Voms = Mo - molar mass Vm5 = 3RT Aug. K. E. of a molecule = 1 mvms of gas $=\frac{1}{2}mV_{rms}^2$ $\frac{= I m \times 3RT}{2}$ Aug. K.E. of a molecule = 1 x 3 KT of gas Aug. k.E. per = 3 K molecule

03. Kinetic Theory of Gases

Aug. K.E. per mole = 3 RT 1 mole of gas consist of A vogadoo's no. of molecules i.e. NA molecules K.E. of 1 mole - k.E. of Avogadoo's no of molecules. of gas K.E. of I mole = NA X Aug. K.E. of I of 995 molecules of 195. = NAX3 KT = NAX3XRXT K.E. of 1 mole = 3 xTxR of gas. Aug. k.E. mole = 3 RT R= 8.314 J molk $K = 1.38 \times 10^{-23} \text{ J}$ Boltzmann constant

PERFECT BLACK BODY

- 1. A body which absorbs the entire radiant energy incident on it, is called as ideal or perfect blackbody.
- 2. Perfectly black body does not exist in nature.
- 3. Examples :- Lamp black, Platinum black

Ferry's perfectly black body:-

Silved hed Polished With neat labeled diagram, explain Ferry's Double perfectly black body. walled surface Sphere Surface coaled with larre brack Incident radiation Apeoplure 4

- 1. Ferry's perfectly black body consist of, Double walled hollow sphere having tiny hole or aperture, through which radiant heat can enter.
- 2. The space between the walls is evacuated and outer surface of the sphere is silvered.
- 3. The inner surface of sphere is coated with lamp black.
- 4. There is conical projection on the inner surface of sphere opposite the aperture.
- 5. The projection ensures that a ray travelling along the axis of the aperture is not incident normally on the surface and is therefore not reflected back along the same path.
- 6. A heat ray entering the sphere through the aperture suffers multiple reflections and is almost completely absorbed inside.
- 7. Thus, the aperture behaves like a perfect blackbody
- 8. The effective area of perfectly black body is equal to the area of the aperture.

State Prevost's theory of exchange of heat

All bodies at all temperatures above 0 K [absolute zero temperature] radiate thermal energy and at the same time, they absorb radiation received from the surroundings.

Radiation:-

It is the process of transfer of heat from a body which is at higher temperature to a body which is at lower temperature in the form of electromagnetic waves.

Electromagnetic waves:

- 1] Infrared rays
- 2] Gamma rays
- 3] UV Rays
- 4] Light rays
- 5] X-Rays
- 6 Visible spectrum

Properties:

1] The heat energy which is transferred is called as radiant heat or radiant energy.

- 2] This process of transfer of heat is radiation takes place at all temperature except at absolute zero temperature.
- 3] It is the fastest mode of transfer of heat.
- 4] EM waves i.e. heat radiations travel with the speed of light in air.
- 5] Heat radiation can pass through vaccum.
- 6] When heat radiation travel through medium particle of medium does not get heated.
- 7] EM waves consist of X-rays, Gamma-Rays, UV rays, Visible spectrum rays, Infrared rays.

8] Radiation in IR spectrum are mostly thermal radiations due to temperature of body.

where,

Q = Amount of radiant heat which is emitted by source.

Qa = Amount of radiant heat absorbed by the body.

Pr = Amount of radiant heat reflected by the body

Of = Amount of radiant heat transmitted by the body.

According to law of conservation

Divided by Q, above eqn.

$$\frac{Q}{Q} = \frac{Qq}{Q} + \frac{Qr}{Q} + \frac{Qt}{Q}$$

$$1 = \frac{qq}{q} + \frac{qr}{q} + \frac{qt}{q}$$

$$\delta = \frac{qr}{q}$$

where,

Q = Amount of radiant heat which is emitted by source.

Qa = Amount of radiant heat absorbed by the body.

Pr = Amount of radiant heat seflected by the body

Of = Amount of radiant heat transmitted by the body.

According to law of conservation of eneagy

Divided by Q, above eqn.

$$1 = \frac{qq}{q} + \frac{qr}{q} + \frac{qt}{q}$$

13

1] Coefficient of absorption (a)

- It is the ratio of amount of radiant heat absorbed by the body to the total amount of radiant heat incident upon it.

It is denoted by a

It is also called as absorptive power or absorptivity.

Coefficient of reflection(r)

It is the ratio of amount of radiant heat reflected by the body to the total amount of radiant heat incident upon it.

$$S = \frac{Q}{Qs}$$

3] Coefficient of transmission (t)

It is the ratio of amount of radiant heat transmitted by the body to the total amount of radiant heat incident upon it.

Define emissive power of the body:-

The quantity of heat radiated per unit area per unit time is defined as emissive power of the body at given temperature.

$$R = \frac{\varphi}{At}$$

5.1. unit of emissive power J or

Dimensions of emissive power,

[LOMIT-3]

Coefficient of emission:- (e)

The coefficient of emission or emissivity (e) of a given surface is the ratio of the emissive power R of the surface to the emissive power R of a perfect black surface, at the same temperature.

 $e = \frac{R}{RB}$

for perfect black body e=1
for perfect deflector e=0
for an ordinary body 0/e/1 depending

on the nature of the surface.

State Wien's displacement law:-

The wavelength for which emissive power of a blackbody is maximum is inversely proportional to

the absolute temperature of the

blackbody.

Amax
$$\frac{1}{T}$$
 Amax $\frac{1}{T}$

Amax $\frac{1}{T}$

Amax $\frac{1}{T}$

Where, b is cared as wiens constant

The value is 2-897 x 10-3 mK.

State Stefan-Boltzmann law

The rate of emission of radiant energy per unit area or the power radiated per unit area of a perfect blackbody is directly proportional to the fourth power of its absolute temperature.

5.1. Unit [1] Stefan's constant is equal to, $\sigma = 5.67 \times 10^{-8} \text{ T m}^2 \text{s}^{-1} \text{ k}^{-4}$

 $\frac{J}{m^2 5 \, \text{K4}} \, \text{m} \, \text{Mm}^{-2} \, \text{k}^{-4}$

Dimension 5:

Specific heat capacity of gases

1] Principal specific heat:-

Amount of heat required to raise the temperature of unit mass of gas through 1° C/1°K is called as principal specific heat.

$$S = \frac{dq}{mxdT}$$

$$C = \frac{dQ}{mxdT}$$

There are **two** types,

- A] Principal specific heat at constant pressure
- B] Principal specific heat at constant volume
- A] Principal specific heat at constant pressure:-

Amount of heat

required to raise the temperature of unit mass of

gas through 1°C /1 K at constant pressure is known as principal specific heat at constant pressure.

B] Principal specific heat at constant volume:-

Amount of heat required to raise the temperature of unit mass of gas through 1 C / 1 K at constant volume is known as principal specific heat at constant volume.

Molar specific heat:-

Amount of heat required to raise the temperature of 1 mole of gas through 1 C /1 K is called as molar specific heat.

$$S = \frac{d\varphi}{n \times dT}$$

$$C = \frac{dq}{nxdT}$$

Molar specific heat

There are 2 types,

- A] Molar specific heat at constant pressure
- B] Molar specific heat at constant volume

A] Molar specific heat at constant pressure:-

Amount of heat required to raise the temperature of 1 mole of gas through 1 C / 1K at constant pressure is known as molar specific heat at constant pressure.

B] Molar specific heat at constant volume:-

Amount of heat required to raise the temperature of 1 mole of gas through 1° C/1K at constant volume is known as molar specific heat at constant volume.

$$C_V = \frac{dq}{nxdT}$$

03. Kinetic theory of Gases & Radiations
Relation:

Mayer's Relation:	,
Consider I mole in cylinder with air lig	bt frictionless &
movable piston,	Piston
Volume is kept constan	
dV = 0	dTT -
$C_V = d\Phi$	and du
hxdT	
CV = dQ1	do 2 cylinder
hxdT	•
dq1 = CvxnxdT = di)(<u>1</u>)
When pressure is kept constant,	
dP=0	+ Piston
Cp = d Q2	174
$n \times dT$	dTT = = = = =
dQ2=CpxnxdT	(2)
(i) Increase in internal	energy
(du)	Lcylinder
(11) External work done	$= (du) d\theta_2$

03. Kinetic throom of Gases & Radiations dQ2 = dU+dw 1 xCpxdT = 1xCvxdT+PdV PV = RT Pdv = RdT 1xCpxdf=1xCvxdf+Rdf Cp=Cv-1-R Cp-Cv=R This is called mayer's relation. do - Colonies dw - Joyles Cp-(v=R

03. Kinetic theory of Gases & Radiations. Relation between molar specific heat & principal Sp. heat. molar sp. heat =/molar mass/x/principal = MoxC CP Cp = Mox (p Cv = MoxCv Put this value in eqn (3), Cp-Cv=R MoxCp-MoxCv=R Mo ((p-(v) = R