1.	The dimension of magnetic field in M, L, T and C (Coulomb) is given as
	a) MT ² C ⁻² b) MT ⁻¹ C ⁻¹ c) MT ⁻² C ⁻¹ d) MLT ⁻¹ C ⁻¹
2.	Let $[\in_0]$ denote the dimensional formula of the permittivity of vacuum. If M = mass, L = length, T = time and A = electric current, then:
	a) $[\in_0] = [M^{-1}L^{-3}T^2A]$ b) $[\in_0] = [M^{-1}L^{-3}T^4A^2]$
	c) $[\in_0] = [M^{-1}L^2T^{-1}A^{-2}]$ d) $[\in_0] = [M^{-1}L^2T^{-1}A]$
3.	The respective number of significant figures for the numbers 23.023 , 0.0003 and 2.1×10^{-3} are a) 5, 1, 2 b) 5, 1, 5 c) 5, 5, 2 d) 4, 4, 2
4.	The period of oscillation of a simple pendulum is $T = 2\pi \sqrt{\frac{L}{g}}$.
	Measured value of L is 20.0 cm known to 1mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. Te accuracy in the determination of g is
	a) 3% b) 1% c) 5% d) 2%
5.	A student measures the time period of 100 oscillations of a simple pendulum four times. The data set is 90s, 91s, 95s and 92s. If the minimum division in the measuring clock is 1s, then the
	reported mean time should be:
	a) 92 <u>+</u> 5.0s b) 92 <u>+</u> 1.8s c) 92 <u>+</u> 3s d) 92 <u>+</u> 2s
6.	Which two of the following five physical parameters have the same
	dimensions?
	A) Energy density B) Refractive index C)Dielectric constant D) Young's modulus E) Magnetic field
	a) (A) and (E) b) (B) and (D) c) (C) and (E)
	d) (A) and (D)
7.	If the error in the measurement of radius of a sphere is 2%, then
	the error in the determination of volume of the sphere will be –
	a) 2% b) 4% c) 6% d) 8%
8.	If the dimensions of a physical quantity are given by MaLbTc, then
·	the physical quantity will be:
	a) Velocity if $a = 1$, $b = 0$, $c = -1$ b) Acceleration if $a = 1$, $b = 1$, $c = -2$
	c) Force if $a = 0$, $b = -1$, $c = -2$ d) Pressure if $a = 1$, $b = -1$, $c = -2$
0	

The dimension of $\frac{1}{2} \epsilon_0 E^2$, where ϵ_0 is permittivity of free space and 9. E is electric field, is – a) ML^2T^{-2} b) $ML^{-1}T^{-2}$ c) ML^2T^{-1} d) MLT^{-1}

10.	
	a) $[L^{-1/2}T^{1/2}]$ b) $[L^{1/2}T^{-1/2}]$ c) $[L^{-1}T]$ d) $[LT^{-1}]$
11.	The density of material in CGS system of units is 4g/cm ³ . In a
	system of units in which unit of lengths is 10 cm and unit of mass
	is 100 g, the value of density material will be :
	a) 0.4 b) 40 c) 400 d) 0.04
12.	The damping force on an oscillator is directly proportional to the
	velocity. The units of the const. of proportionality are
	a) $kgms^{-1}$ b) $kgms^{-2}$ c) kgs^{-1} d) kgs
13.	In an experiment four quantities a, b, c and d are measured with
	percentage error 1%, 2%, 3% and 4% respectively. Quantity P is
	calculated as follows $P = a^3b^2/cd$. % error in P is -
	a) 4% b) 14% c) 10% d) 7%
14.	if force (F), velocity (V) and time (T) are taken as fundamental
	units, then the dimensions of mass are
	a) $[FVT^{-1}]$ b) $[FVT^{-2}]$ c) $[FV^{-1}T^{-1}]$ d) $[FV^{-1}T]$
15.	If energy (E), velocity (V) and time (T) are chosen as the
	fundamental quantities the dimensional formula of surface
	tension will be:
	a) [EV ⁻¹ T ⁻²] b) [EV ⁻² T ⁻²] c) [E ⁻² V ⁻¹ T ⁻³]
	d0 [EV ⁻² T ⁻¹]
16.	In dimension of critical velocity v _e , of liquid following through a
10.	
10.	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient
10.	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube
10.	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x , y and z are given by :
10.	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : a) 1, 1, 1 b) 1, -1, -1 c) -1, -1, 1 d) -1, -
	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x , y and z are given by : a) 1, 1, 1
	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x , y and z are given by : a) 1, 1, 1 b) 1, -1, -1 c) -1, -1, 1 d) -1, -1 Planck's constant (h), speed of light in vacuum (c) and Newton's
	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x , y and z are given by : a) 1, 1, 1
	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x , y and z are given by : a) 1, 1, 1 b) 1, -1, -1 c) -1, -1, 1 d) -1, -1 Planck's constant (h), speed of light in vacuum (c) and Newton's gravitational constant (G) are three fundamental constants. Which of the following combinations of these has the dimensions
	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x , y and z are given by : a) 1, 1, 1
	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x , y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho^y r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x , y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho^y r^z)$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho^y r^z)$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho v r^z)$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho v r^z)$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho v r^z)$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho^y r^z)$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho^{vr^2})$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by: a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho^y r^z)$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by : a) 1, 1, 1
17.	tube are expressed as $(\eta^x \rho^{vr^2})$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by: a) 1, 1, 1

20.	If the speed of light (c), acceleration due to gravity (g) and pressure (p) are taken as fundamental units, the dimensions of gravitational constant (G) are:		
	a) $[c^2g^3p^2]$ b) $[c^0g^2p^{-1}]$ c) $[c^2g^2p^{-2}]$ d) $[c^0gp^{-3}]$		
21.	Which of the following combinations of three dimensionally		
	different physical quantities P, Q, R can never be a meaningful		
	quantity? a) $PQ - R$ b) PR/Q c) $(P - Q)/R$ d) $(PR - Q^2)$		
22.	/ QR In a view unit system, 1 unit of time is equal to 10 second, 1 unit		
<i>44</i> .	of mass is 5 kg and 1 unit of length is 20 m. In the new system of units, 1 unit of energy is equal to:		
	a) 20 joule b) $\frac{1}{20}$ joule c) 4 joule d) 16 joule		
23.	The dimensions of $\frac{a}{b}$ in the equation, P = where P is pressure, x		
	is distance and t is time are t		
	a) [M ² LT ⁻³] b) [MT ⁻²] c) [LT ⁻³] d) [ML ³ T ⁻¹]		
24.	The time dependence of a physical quantity p is given by $p - p_0$		
	$e^{(-\alpha t^2)}$ where α is constant and t is time. The constant α :		
	a) is dimensionless b) has dimensions [T-2]		
0.5	c) has dimensions [T ²] d) has dimensions of p		
25.	If area (A), velocity (ν) and density (ρ) are base units, then the		
	dimensional formula of force can be represented as : a) $[A \upsilon \rho]$ b) $[A \upsilon^2 \rho]$ c) $[A \upsilon \rho^2]$ d) $[A^2 \upsilon \rho]$		
26.	Two forces P and Q act at a point and have resultant R. If Q is		
40.	_		
	replaced by $\frac{(R^2 - P^2)}{Q}$ acting in the direction opposite to that of Q,		
	the resultant:		
	a) remains same b) becomes halfc) becomes twice d)		
07	none of these If motord of mass, length and time as fundamental quantities, we		
21.	If instead of mass, length and time as fundamental quantities, we choose velocity, acceleration and force as fundamental quantities		
choose velocity, acceleration and force as fundamental quant express their dimensions by υ, a and F respectively, then dimensions of Young's modulus will be expressed as:			
28.	Which of the following statements is correct about conversion of		
	units, for example $1 \text{ m} = 100 \text{ cm}$?		
	a) Conversion of units have identical dimensions on each side of		
	the equal sign but not the same units.		
	b) Conversion of units have identical dimensions on each side of		
	the equal sign but not the same units.		

	c) If a larger unit is used then numerical value of physical
	quantity is large.
	d) Due to conversion of units physical quantity to be measured
	will change.
29.	If the speed v of a particle of mass m as function of time t is given
47.	
	by $v = \omega A \sin \left[\left(\sqrt{\frac{k}{m}} \right) t \right]$. Where A has dimension of length.
	a) The argument of trigonometric function must be a
	dimensionless quantity
	b) Dimensional formula of ω is [LT ⁻¹]
	c) Dimensional formula of k is [MLT ⁻²]
	d) Dimensional formula of $\sqrt{\frac{k}{m}}$ is [T]
	d) Differsional formula of $\sqrt{\frac{1}{m}}$ is [1]
30.	If P and Q have different non-zero dimensions, which of the
	following operations is possible?
	a) $P + Q$ b) PQ c) $P - Q$ d) $1 - P/Q$
31.	In the formula $X = 3YZ^2$, X and Z have dimensions of capacitance
	and magnetic induction respectively. What are the dimensions of
	Y in MKS system?
	a) $[M^{-3}L^{-1}T^3Q^4]$ b) $[M^{-3}L^{-2}T^4Q^4]$ c) $[M^{-2}L^{-2}T^4Q^4]$ d) $[M^{-3}L^{-2}T^4Q^1]$
32.	$\alpha = \begin{pmatrix} -\alpha_7 \end{pmatrix}$
02.	β exp($k\theta$), where α , β are
	constants, z is distance, k is Boltzmann's constant and θ is
	temperature. The dimensions of β are :
	a) $[M^0L^0T^0]$ b) $[M^{-1}L^{-1}T^{-1}]$ c) $[M^0L^2T^0]$ d) $[M^{-1}L^{-1}T^2]$
33.	A wire of length $l = 6 \pm 0.06$ cm and radius $r = 0.5 \pm 0.005$ cm and
	mass m = 0.3 ± 0.003 g. Maximum percentage error in density is
	a) 4% b) 2% c) 1% d) 6.8%
34.	Which of the following sets have different dimensions?
	a) Pressure, Young's modulus, stress
	b) Emf, potential difference, electric potential
	c) Heat, work done, energy
	d) Dipole moment, electric flux, electric field
35.	Which of the pair have same dimensions?
	a) Force and strain b) Force and stress
	c) Angular velocity and frequency d) Energy and strain
36.	The physical quantities not having same dimensions are:
	a) torque and work b) momentum and Planck's
	constant
	c) stress and Young's modulus d) speed and $(\mu_0 \epsilon_0)^{-1/2}$
37.	The dimension of coefficient of viscosity is:
	a) $[ML^{-1}T^{-1}]$ b) $[MLT^{-2}]$ c) $[ML^{0}T^{-2}]$ d) $[MLT^{-1}]$

38.	-	with a velocity of 5 m/s. In 10 sec, m/s northwards. The average
	a) zero	b) $\frac{1}{\sqrt{2}}$ ms ⁻² towards north-west
	c) $\frac{1}{\sqrt{2}}$ ms ⁻² towards north-east	d) $\frac{1}{2}$ ms ⁻² towards north-west
39.	dimensions is: a) angular momentum and Plan b) momentum of inertia and me c) work and torque	
40.	d) impulse and momentum Which of the following units where Q denotes the electric ch a) weber (Wb) b) Wb/m² H/m²	
41.	The dimension of magnetic fie given as: a) [MLT ⁻¹ C ⁻¹] b) [MT ² C ⁻² d) [MT ⁻² C ⁻¹]	ld in M, L, T and C (Coulomb) is c) [MT ⁻¹ C ⁻¹]
42.	Which of the following dimensions temperature) a) Angular momentum-[M¹L²T-c) Stefan's constant-[M¹T-³θ-4] ²]	d) Planck's constant [M¹L²T-
43.	where P is the pressure, V i temperature, R is the molar ga	Fa real gas is $\left(P + \frac{a}{V^2}\right) (V - b) = nRT$ s the volume, T is the absolute as, constant and a, b are arbitrary ing have the same dimensions as
44.	pairs are the same. Identify the	b) Angular momentum and work
45.	The dimensions of length are ex	expressed as $G^x c^y h^z$, where G , c and nal constant, speed of light and then: b) $x = (1/2)$, $z = (1/2)$ d) $y = (1/2)$, $z = (3/2)$

- 46. The pairs of physical quantities that have the same dimensions in (are):
 - a) Reynolds number and coefficient of friction
 - b) Curie and frequency of a light wave
 - c) Latent heat and gravitational potential
 - d) Planck's constant and torque

