1.	The dimensions of Reynold's constant are a) $[M^{0}L^{0}T^{0}]$ b) $[ML^{-1}T^{-1}]$ c) $[ML^{-1}T^{-2}]$ d) $[ML^{-2}T^{-2}]$
2.	Volt is equivalent to
	a) $\frac{\text{erg}}{\text{centimetre}}$ b) $\frac{\text{newton}}{\text{coulomb}}$ c) $\frac{\text{jouls}}{\text{coulomb}}$ d) $\frac{\text{erg}}{\text{ampere}}$
3.	Identify the pair whose dimensions are equal a) Torque and work b) Stress and energy c) Force and stress d) Force and work
4.	Which one of the following represents the correct dimensions of
	the coefficient of viscosity? a) $[ML^{-1}T^{-1}]$ b) $[MLT^{-1}]$ c) $[ML^{-1}T^{-2}]$ d) $[ML^{-2}T^{-2}]$
5.	Out of the following pair, which one does NOT have identical
	dimensions?
	a) Impulse and momentum
	b) Angular momentum and Planck's constant
	d) Moment of inertia and moment of a force (towards north-west)
6.	The dimensions of magnetic Field in M. L. T and C (coulomb) is
	given as
	a) $[MLT^{-1}C^{-1}]$ b) $[MT^{2}C^{-2}]$ c) $[MT^{-1}C^{-1}]$ d) $[MT^{-2}C^{-1}]$
7.	If area (A), velocity (V) and density (p) are base units, then the
	dimensional formula of force can be represented as
8	a) $Av\rho$ b) $Av^2\rho$ c) $Av\rho^2$ d) $A^2v\rho$ The surface tension of a liquid is 70 dyne/cm. In MKS system its
0.	value is
	a) 70 N/m b) 7 x 10 ⁻² N/m c) 7 x 10 ³ N/m d) 7 x 10 ² N/m
9.	If C and R represent capacitance and resistance respectively, then
	the dimensions of RC are
10	a) $[M^{0}L^{0}P^{2}]$ b) $[M^{0}L^{0}T]$ c) $[ML^{-2}]$ d) None of these
10.	E, III, 5 and 6 denote energy, mass, angular momentum and EI^2
	gravitational constant respectively, then the dimensions of $\frac{LS}{m^5G^2}$
	is
	a) Angle b) Length c) Mass d) Time
11.	The equation of state of some gases can be expressed as $\left(P + \frac{a}{V^2}\right)$
	(V - b) = RT. Here P is the pressure, V is the volume a, b, R are
	constants. The dimensions of 'a' are. (M013T0) (M016T0)
12	The frequency of vibration f of a mass m suspended from a spring
14.	of spring constant K is given by a relation of this type $f = C m^x K^y$;
	where C is a dimensionless quantity. The value of x and y are
	a) $x = \frac{1}{2}$, $y = \frac{1}{2}$ b) $x = -\frac{1}{2}$, $y = -\frac{1}{2}$ c) $x = \frac{1}{2}$, $y = -\frac{1}{2}$ d) $x = -\frac{1}{2}$, $y = \frac{1}{2}$
	1

13.	The period of a body under SHM is represented by $T = P^a D^b S^c$; where P is pressure, D is density and S is surface tension. The value of a, b and c are
	a) $-\frac{3}{2}$, $\frac{1}{2}$, 1 b) -1 , -2 , 3 c) $\frac{1}{2}$, $-\frac{3}{2}$, $-\frac{1}{2}$ d) 1, 2, $\frac{1}{3}$
14.	The dimensions of physical quantity X in the equation Force = $\frac{1}{2}$
	$\frac{\Lambda}{\text{Density}}$ is given by
15.	a) $[M^{1}L^{4}T^{-2}]$ b) $[M^{2}L^{-2}T^{-1}]$ c) $[M^{2}L^{-2}T^{-2}]$ d) $[M^{1}L^{-2}T^{-1}]$ Each side of a cube is measured be 7.203 m. What is the total volume of the cube to appropriate significant figures – a) 373.7 m ³ b) 311.3 m ³ c) 211.3 m ³ d) 3737 m ³
16.	Find the value of $\frac{1.53 \times 0.9995}{1.592}$ with due regard for significant figures
	a) 0.961 b) 0.123 c) 0.921 d) 0.913
17.	The values of kinetic energy K and potential energy U are
	K = 100.0 + 2.0 J, U = 200.0 + 1.0 J. Then the percentage error
	in the measurement of mechanical energy is
10	a) 2.5% b) 1% c) 0.5% d) 1.5%
18.	observed to be 76.3 ± 0.4 °C and 67.7 ± 0.3 °C. Find the fall in the
	temperature of the liquid.
1.0	a) $8.6 \pm 0.1^{\circ}C$ b) $8.6 \pm 0.7^{\circ}C$ c) $1.6 \pm 0.1^{\circ}C$ d) $8.6 \pm 1.1^{\circ}C$
19.	The density of a sphere is measured by measuring its mass and diameter. If it is known that the maximum percentage errors in
	the measurement of mass and diameter are 2% and 3%, then find
	the maximum percentage error in the measurement of density?
20	a) 15% b) 18% c) 9% d) 11% With the unual potentions, the following equation
20.	S _t = 11 + $\frac{1}{2}$ = (2t - 1) is
	2 a) Only numerically correct
	b) Only dimensionally correct
	c) Both numerically and dimensionally correct
01	d) Neither numerically nor dimensionally correct
21.	power. What dimensions does he view for muscle?
	a) $[MLT^{-2}]$ b) $[ML^{2}T^{-2}]$ c) $[MLT^{2}]$ d) $[L]$
22.	If P represents radiation pressure, c represents speed of light and
	Q represents radiation energy striking a unit area per second, the non-zero integers x y and z such that $P^x O y c^z$ is dimensionless
	are.
	a) $x = 1, y = 1, z = -1$ b) $x = 1, y = -1, z = 1$

