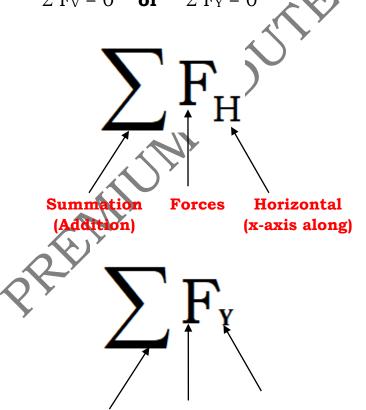
Equilibrium


"Any system of forces which keeps the body at rest is said to be in equilibrium".

Conditions of Equilibrium:-

1. For coplanar concurrent Forces

$$\Sigma F_H = 0$$
 or $\Sigma F_X = 0$

$$\Sigma F_V = 0$$
 or $\Sigma F_Y = 0$

Summation Forces Vertical

where,

- Σ **F**_H = **0**, Algebraic sum of components of all forces along **X**-axis must be equal to Zero.
- Σ $\mathbf{F_v}$ = $\mathbf{0}$, Algebraic sum of components of all forces along \mathbf{Y} -axis must be equal to Zero.

2. For coplanar non-concurrent Forces

$$\Sigma F_{\rm H} = 0$$
 or $\Sigma F_{\rm X} = 0$

$$\Sigma F_V = 0$$
 or $\Sigma F_X = 0$

$$\Sigma M = 0$$

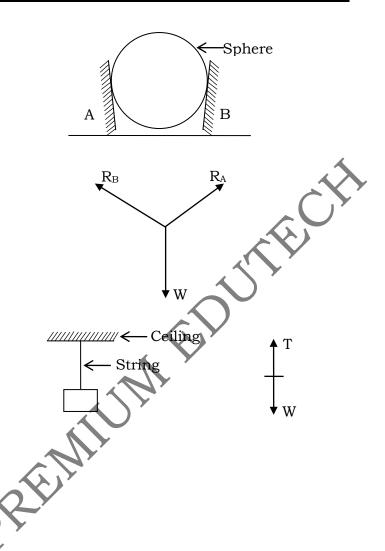
where,

- Σ \mathbf{F}_{H} = $\mathbf{0}$, Algebraic sum of components of all forces along \mathbf{X} -axis must be equal to Zero.
- $\Sigma \mathbf{F_v} \Rightarrow \mathbf{0}$, Algebraic sum of components of all forces along **Y-axis** must be equal to Zero.

 Σ **M** = **0**, Algebraic sum of moments of all forces about any point in their plane must be equal to zero.

Free Body Diagram (FBD)

If all **active** and **reactive** forces acting on a free body are shown, the diagram is known as Free Body Diagram (**FBD**).

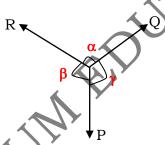

Active Force = (Applied force and weight of a body)

Reactive Force = (Floor, String, Hinged roller support, cables)

A ← Block

R: Reactions offered by Floor

W W: Weight of the Block



Lami's Theorem

(Equilibrium of three coplaner concurrent forces)

Statement

"If three forces acting at a point on a body keep it at rest, then each force is proportional to the sine of the angle between the other two forces."

Mathematically,

$$\frac{p}{\sin\alpha} = \frac{Q}{\sin\beta} = \frac{R}{\sin\gamma}$$

 α = Angle between Q and R

 β = Angle between P and R

 γ = Angle between Q and P